Training Global Linear Models for Chinese Word Segmentation

نویسندگان

  • Dong Song
  • Anoop Sarkar
چکیده

This paper examines how one can obtain state of the art Chinese word segmentation using global linear models. We provide experimental comparisons that give a detailed road-map for obtaining state of the art accuracy on various datasets. In particular, we compare the use of reranking with full beam search; we compare various methods for learning weights for features that are full sentence features, such as language model features; and, we compare an Averaged Perceptron global linear model with the Exponentiated Gradient max-margin algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Chinese Word Segmentation

This paper presents a Chinese word segmentation system which can adapt to different domains and standards. We first present a statistical framework where domain-specific words are identified in a unified approach to word segmentation based on linear models. We explore several features and describe how to create training data by sampling. We then describe a transformation-based learning method u...

متن کامل

A Fast Decoder for Joint Word Segmentation and POS-Tagging Using a Single Discriminative Model

We show that the standard beam-search algorithm can be used as an efficient decoder for the global linear model of Zhang and Clark (2008) for joint word segmentation and POS-tagging, achieving a significant speed improvement. Such decoding is enabled by: (1) separating full word features from partial word features so that feature templates can be instantiated incrementally, according to whether...

متن کامل

Fast and Accurate Neural Word Segmentation for Chinese

Neural models with minimal feature engineering have achieved competitive performance against traditional methods for the task of Chinese word segmentation. However, both training and working procedures of the current neural models are computationally inefficient. This paper presents a greedy neural word segmenter with balanced word and character embedding inputs to alleviate the existing drawba...

متن کامل

Training a Perceptron with Global and Local Features for Chinese Word Segmentation

This paper proposes the use of global features for Chinese word segmentation. These global features are combined with local features using the averaged perceptron algorithm over N-best candidate word segmentations. The N-best candidates are produced using a conditional random field (CRF) character-based tagger for word segmentation. Our experiments show that by adding global features, performan...

متن کامل

Sequence segmentation for statistical machine translation

In the last decade, while statistical machine translation has advanced significantly, there is still much room for further improvements relating to many natural language processing tasks such as word segmentation, word alignment and parsing. Human language is composed of sequences of meaningful units. These sequences can be words, phrases, sentences or even articles serving as basic elements in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009